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Abstract
Soil water supply plays a key role in driving switchgrass (Panicum virgatum L.) yield,

and therefore is an important parameter for crop-model accuracy. ALMANAC (Agri-

cultural Land Management Alternative with Numerical Assessment Criteria) model

has been applied to simulating switchgrass growth with mixed results. The objective

was to develop and test a calibration for ALMANAC simulating soil water dynamics

in a switchgrass (‘Alamo’) stand under Arkansas conditions. Soil volumetric water

content (SW) profiles were measured daily in switchgrass from May 2009 to Febru-

ary 2013. Soil, crop, and weather input data were developed based on in situ mea-

surements. After identifying the most sensitive parameters in SW simulation, a cali-

bration method was proposed, and the parameters initial soil water (FFC), permanent

wilting point (U), field capacity (FC), sand content (SAN), silt content (SIL), pH, and

maximum stomatal conductance (GSI) were modified. Daily SW simulation outputs

from default and calibrated runs were compared to SW observations. Default Will-

mott agreement d-index values were lower than the calibrated d-index values in all

years. Therefore, calibration improved simulation accuracy. Calibration accuracy was

greater in 2009 and 2010 than in 2011 and 2012. Lower root mean square error of

calibrated versus observed SW data confirmed the elevated d-index values. Lower

accuracy in the latter years was related to drought periods when ALMANAC was

unable to mimic switchgrass drought adaption by lowering GSI. Calibration of SW in

ALMANAC was aided by using site-specific soil data. Improvement of SW calibra-

tion for drought-resistant plants may be achieved by quantifying GSI dynamics.

Abbreviations: ALMANAC, Agricultural Land Management Alternative

with Numerical Assessment Criteria; BD, bulk density; CN2, curve

number; EPIC, Erosion-Productivity Impact Calculator; ET,

evapotranspiration; FC, field capacity, FFC, initial soil water; GSI,

maximum stomatal conductance; IPAR, leaf area interception of

photosynthetically active radiation; LAI, leaf area index; PKR, percolation

beyond the rood zone; Q, surface runoff; SAN, sand content; SIL, silt

content; SPAW, Soil-Plant-Air-Water model; SW, soil volumetric water

content; U, permanent wilting point; WCR, water content reflectometer.
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1 INTRODUCTION

The Energy Independence and Security Act of 2007 called

for US reductions in foreign oil dependence and greenhouse

gas emissions by increased use of biofuels (US EPA, 2019).

The act set Renewable Fuel Standard (RFS2) targets to pro-

duce 136 billion L of oil equivalent in 2022, and this target

is reset annually (US EPA, 2019). Lignocellulosic biofuels,

which are derived from plants with large cellulose, hemicel-

lulose, and lignin concentrations, are classified as advanced
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biofuels due to lifecycle reductions of greenhouse gas emis-

sions by at least 60% compared with petroleum, attributable

largely to low petroleum inputs for crop production.

Switchgrass has potential to contribute substantially to

meeting the RFS2 goal as a perennial, herbaceous energy

crop in conjunction with woody biomass, crop residues, and

other herbaceous energy crops (Langholtz, Stokes, & Eaton,

2016). Switchgrass produces large biomass yields, has low

requirements for water and nutrients, is compatible with con-

ventional farming equipment, and is broadly adapted in the

United States (McLaughlin & Walsh, 1998). The dense root-

ing and perennial growth habit of switchgrass contribute to

mitigating soil erosion on erosion-prone soils (McLaughlin &

Walsh, 1998) and restoring favorable hydraulic properties of

topsoils that were eroded by annual cropping (Zaibon, Ander-

son, Kitchen, & Haruna, 2016).

Progress has been made recently in elucidating manage-

ment practices for switchgrass establishment (Butler, Stein,

Pittman, & Interrante, 2016), fertilization, and timing of

harvest (Cahill et al., 2014; Lindsay et al., 2018). Further

refinement of switchgrass management is needed to lower

costs of feedstock production to meet year-round supply

needs (Wetzstein, 2010). Lindsay et al. (2018) showed that

single-pass harvesting (direct chopping) of senescent switch-

grass could be economically more effective in meeting biore-

finery needs than double-pass harvesting (swathing-curing-

chopping). Harvest losses would be greater at the senescent

stage; however, enhanced nutrient recycling would lower fer-

tilizer replacement costs. Lindsay et al. (2018) concluded that

refined prediction of switchgrass growth and nutrient removal

using decision-making tools would aid in optimizing the allo-

cation of time, labor, and fertilizers to maximize environ-

ment benefits and economic competitiveness of biomass as

an energy source.

ALMANAC (Agricultural Land Management Alterna-

tive with Numerical Assessment Criteria) is a process-

oriented, crop simulator designed to predict growth of vari-

ous crops including switchgrass (Kiniry, Williams, Gassman,

& Debaeke, 1992, 2005). It includes enhanced logic on plant

growth, originally derived from the Erosion-Productivity

Impact Calculator (EPIC) model (Williams, Jones, Kiniry, &

Spanel, 1989). The first application of ALMANAC to simu-

lating switchgrass yield was by Kiniry et al. (1996), mainly

as a forage crop in fixing the response of leaf area index

(LAI) development to heat unit accumulation, and in test-

ing the relative sensitivity of parameters across wide ranges

in precipitation and soil depth across Texas. The importance

of accurately accounting for soil depth was highlighted to

characterize water availability for deeply rooted crops. Inter-

est in switchgrass as a lignocellulosic bioenergy crop stimu-

lated efforts to further parameterize ALMANAC to simulate

biomass yield over variable environments. Kiniry et al. (2005)

Core Ideas
• Calibrating ALMANAC for soil water improved

its ability to predict switchgrass production.

• Model parameters were calibrated for accurate soil

water simulation at a site in Arkansas.

• Soil water was overestimated during drought due

to low ability to lower stomatal conductance.

tested the predictive ability of ALMANAC in three locations

in Texas, one in southeast Louisiana, and one in southwest

Arkansas. Mean biomass yields were acceptably simulated;

however, yearly variations were not well simulated. Sensitive

factors affecting simulations were USDA-NRCS (US Depart-

ment of Agriculture National Resources Conservation Ser-

vice) runoff curve number (CN2) and maximum stomatal

conductance (GSI; parameter abbreviations are those used in

ALMANAC as defined in Tables 1–3) which relate to soil and

plant-water relations.

‘Alamo’ is a lowland type of switchgrass originating in

south Texas and is a consistently high-yielding cultivar in the

south-central United States (Cassida et al., 2005). Behrman,

Keitt, and Kiniry (2014) adjusted plant growth parameters in

ALMANAC to match temperature and day-length values of

four common cultivars, including Alamo, to each cultivar’s

location of origin. ALMANAC simulated biomass yields well

enough to construct meaningful yield-potential maps for each

cultivar across the central and southern Great Plains of the

United States. The same authors stated that spatial variations

in simulated yields could be improved by further parameter-

ization of drivers of growth. Tulbure, Wimberly, Boe, and

Owens (2012) identified amounts and temporal distribution

of precipitation as environmental factors having the great-

est effects on switchgrass biomass yield and yield stability.

These factors support a key role of soil water supply in driv-

ing yield, and are therefore important parameters for model

accuracy. For example, erroneously low soil water simula-

tion would underestimate biomass as a result of an overstated

water stress factor, thereby compromising the calibration of

the plant growth algorithm. The water stress factor is calcu-

lated by a subroutine from EPIC using water balance equa-

tions (Williams et al., 1989). The objective was to test a cali-

bration of the simulation of soil water supply to improve the

accuracy of the water logic because of its role in modulating

the development of leaf area and thus, the conversion of solar

radiation into biomass. This test contributes to a larger effort

to accurately parameterize ALMANAC growth functions that

apply to Arkansas growing conditions.
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T A B L E 1 ALMANAC management input file parameters. Parameter value selections were based on the field management applied from

2008–2012, Fayetteville, AR

Operation Date Parameter Value Description
Year 1: 2008
Planting 3 July COD (Operation) 17: PLANT DR Planting with drill

CRP (Crop input file) 27 Alamo switchgrass

PHU (Potential heat units) 1750◦C-d –

PLANTPO (plant population) 50 plants m−2 –

Year 2: 2009
Burning 1 Feb. COD (Operation) 23: Burned Burning without killing

Fertilization 1 Apr. FN (Nitrogen fertilizer applied) 67 kg ha−1 –

Year 3: 2010
Harvesting 1 Mar. COD (Operation) 47:HARHAY85 85% biomass harvested

Fertilization 1 Apr. FN (Nitrogen fertilizer applied) 67 kg ha−1 –

Year 4: 2011
Harvesting 1 Mar. COD (Operation) 47:HARHAY85 85% biomass harvested

Fertilization 1 Apr. FN (Nitrogen fertilizer applied) 67 kg ha−1 –

Year 5: 2012
Harvesting 3 May COD (Operation) 47:HARHAY85 85% biomass harvested

Fertilization 5 May FN (Nitrogen fertilizer applied) 67 kg ha−1 –

2 MATERIALS AND METHODS

2.1 Background on ALMANAC growth logic

ALMANAC (2014 Version 1.0.18; ARS, 2019) simulates

daily dry biomass accumulation based on the development

of LAI as a function of heat units, leaf area interception of

photosynthetically active radiation (IPAR) with an appropri-

ate light extinction coefficient, and conversion of IPAR to dry

biomass yield via a radiation use efficiency ratio. Biomass

growth is structured within limits of heat unit accumulation

up to maturity and killing frost to cease IPAR. Growth rate

is modulated by constraint coefficients which apply the influ-

ences of minimum and maximum air temperatures, soil and

rooting conditions describing potential water availability, soil

aeration, and N and P availability (Williams et al., 1989). The

values of the constraint coefficients are 1 for non-stress condi-

tions and 0–<1 for stress conditions. More description of the

crop growth logic will be described in a companion publica-

tion, thus the soil water logic is emphasized here along with

the approach to calibrating the associated parameters.

The model contains initial default parameter values for soil,

management (e.g., establishment practices and fertilization),

tillage, and crop traits. Soil profile characteristics are set in the

soil input file derived from the SSURGO database (USDA-

NRCS, 2019a) for a chosen field site. Site-specific soil pro-

file descriptions are preferred when calibrating the model

because the normal variability within a soil mapping unit

causes errors. ALMANAC draws weather information from

an independent weather input file, which can be imported

from National Weather Service records or set up by the user

for a specific site.

ALMANAC simulates daily, plant-available soil water

contents in the rooting depth (SW, m m−1; abbreviations

shown here for parameters are consistent with their use in

ALMANAC) based on the EPIC hydrology algorithm (Kiniry

et al., 1992; Williams et al., 1989). The SW on a given

day is the budget of surface runoff (Q, mm; modulated

by runoff curve number, CN2), percolation below the root

zone (PRK, mm), evapotranspiration (ET, mm), precipitation

(RAIN, mm), and irrigation or precipitation of the previous

day. The SW is an important variable for calculating most

of the crop growth constraints such as plant-available soil

water, aeration, N, and P. Consequently, the crop growth reg-

ulator factor (REG, the 0–1 fraction that constrains biomass

growth) is sensitive to how soil-water status and hydrology are

modeled.

2.2 Field experiment description

Ashworth, Rocateli, West, Brye, and Popp (2017) describes

the site, management, and experimental design in detail. In

brief, a replicated field experiment was performed from 2009–

2013 at the Arkansas Agricultural Research and Extension

Center in Fayetteville (36◦6′ N, 94◦10′ W). The soil was

mapped as Pickwick gravelly loam (fine-silty, mixed, semiac-

tive, thermic Typic Paleudults; USDA, 2019). The study site
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T A B L E 2 ALMANAC soil input file parameters for soil attributes. Values are the parameters according to Pickwick gravelly loam, 3–8%

slopes in the SSURGO database. Zero values are read as ‘unknown value’ by the ALMANAC model

Parameter Description Default value
NLAYER Number of layers 5

HSG Hydrologic soil group B

SALB Soil albedo 0.23

TSLA Maximum number of soil layers 10

ZQT Thickness layer, m 0

ZF Minimum soil profile thickness, m 0

FFC Initial soil water, m m−1 0.75

WTMN Maximum depth to water table, m 0

WTMX Minimum depth to water table, m 0

WTBL Initial depth to water table, m 0

XIDS Soil weathering code 0

RFTT Subsurface flow, days 0

Soil layer attributes Soil layers
LAYER Layer number 1 2 3 4 5
Z Depth of layer, m 0.10 0.20 0.38 0.61 0.80

BD Soil bulk density, g cm−3 1.40 1.40 1.40 1.53 1.55

U Permanent wilt point, m m−1 0.12 0.12 0.11 0.18 0.22

FC Field capacity, m m−1 0.27 0.27 0.26 0.31 0.32

SAN Sand content, % 13.7 13.7 13.7 7.0 8.4

SIL Silt content, % 69.3 69.3 69.3 64.5 53.1

WN Organic N concentration, mg kg−1 0 0 0 0 0

pH Soil pH 5.0 5.0 5.0 5.0 5.0

SMB Sum bases, cmol kg−1 2.5 2.5 2.5 2.5 2.5

CBN Organic carbon, % 1.03 1.03 0.60 0.18 0.18

CAC Calcium carbonate, % 0 0 0 0 0

CEC Cation exchange, cmol kg−1 0 0 0 0 0

ROK Coarse fragment, % 0 0 0 0 3

WNO3 Nitrate, mg kg−1 0 0 0 0 0

AP Labile P, mg kg−1 0 0 0 0 0

RSD Crop residue, Mg ha−1 0 0 0 0 0

BDD Bulk density dry, g cm−3 1.46 1.46 1.46 1.60 1.63

PSP P sorption ratio 0 0 0 0 0

SC Saturated conductivity, mm h−1 32.4 32.4 32.4 32.4 32.4

RT Subsurface flow, d 0 0 0 0 0

WP Organic P, g Mg−1 0 0 0 0 0

was located in the Ozark Highlands ecoregion with an average

annual precipitation of 1155 mm, average daily high and low

temperatures of 20.2◦C and 8.7◦C, respectively (US Climate

Data, 2019).

‘Alamo’ switchgrass was tested under 10 sequential clip-

ping dates from May to February from 2009–2011 which

comprised switchgrass in- and post-season to capture the

complete growth and senescence phases. Sequential clip-

ping was performed only from October to February in

2011–2013.

The data used to calibrate ALMANAC’s soil water simu-

lation were initial soil characteristics and nutrient concentra-

tions, daily volumetric water content, and daily weather data.

Initial characteristics, such as water pH (1:2 soil/water w/v

ratio), extractable plant-available nutrients (P, K, Na, Fe, and

Mg), and soil texture (sand, silt, and clay) were collected in

15-cm depth increments from the surface to 80 cm (Ashworth

et al., 2017).

Soil volumetric water content profiles were measured

throughout the experimental period from May 2009 to
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T A B L E 3 ALMANAC soil input file parameters for Trials 1 and 2 (Fayetteville, AR). Standard values are the parameters according to the

ALMANAC database and the modified values are the parameters values according to initial soil analysis measured in field

Parameter Description Standard value Modified value
FFC Initial soil water, m m−1 0.75 1

GSIa Maximum stomatal conductance, m s−1 7.4 3.3

LAYER Layer number 1 2 3 4 5 1 2 3 4 5
Z Depth of layer, m 0.10 0.20 0.38 0.61 1.63 0.15 0.30 0.45 0.60 0.80

BD Bulk density, g cm−3 1.40 1.40 1.40 1.53 1.55 1.57 1.50 1.44 1.33 1.21

U Permanent wilting point, m m−1 0.12 0.12 0.11 0.18 0.22 0.04 0.07 0.14 0.19 0.24

FC Field capacity, m m−1 0.27 0.27 0.26 0.31 0.32 0.35 0.33 0.45 0.50 0.55

SAN Sand content, % 13.7 13.7 13.7 7.0 8.4 40.9 35.3 30.1 21.0 12.0

SIL Silt content, % 69.3 69.3 69.3 64.5 53.1 41.2 33.1 31.0 25 19

pH Soil pH 5.0 5.0 5.0 5.0 5.0 5.8 6.1 6.1 5.5 4.8

aGSI, Crop input file parameter.

December 2012 using CS616 water content reflectometers

(WCR; Campbell Scientific, Logan, UT) at depths of 15,

30, 45, and 80 cm. Eight WCRs were installed in each of

two locations at opposite ends of the trial site for a total

of 16 water content measurements. Sensors were connected

to a CR10X datalogger (Campbell Scientific, Inc.) to record

volumetric water contents at 4-h intervals (Ashworth et al.,

2017).

Daily weather, such as total solar radiation, maximum

and minimum air temperatures, relative humidity, and wind

speed were acquired from the Arkansas Agricultural Research

and Extension Center micro-meteorological weather station

located less than 500 m from the trial site. Precipitation was

recorded on-site daily using volumetric rain gauges.

2.3 Model adjustments

The daily weather input file was generated using total solar

radiation, precipitation, maximum and minimum air temper-

atures, relative humidity, and wind speed collected as previ-

ously described. The ALMANAC management input file was

generated according to management described by Ashworth

et al. (2017). All ALMANAC management input param-

eters are described in Table 1. Soil input was automati-

cally generated by ALMANAC (2012 Version 1.0.3 Beta 2,

ARS, 2019) based on the USDA-NRCS SSURGO database

(Kiniry, Arnold, & Xie, 2002) according to longitude and

latitude inputs (Table 2). The soil automatically selected

by ALMANAC was Pickwick gravelly loam, 3–8% slopes,

eroded. Finally, the crop input file parameters were the default

‘Alamo’ switchgrass values available in the ALMANAC crop

file. The crop file also estimated potential evapotranspiration

using the Penman–Monteith equation.

Pertinent soil inputs automatically generated by

ALMANAC were modified according to the data col-

lected prior to establishment. The values of SAN (sand in

soil, % w/w) and SIL (silt in soil, % w/w) were modified

according to in situ soil description for each soil depth.

Bulk density values (BD, g cm−3) for each depth were

estimated based on clay and sand measurements using

the Soil-Plant-Air-Water (SPAW) model (Saxton, 2007).

According to Saxton and Rawls (2006), the SPAW model

provides sufficiently accurate estimates for soil water infil-

tration, conductivity, storage, and plant-water relationships

using statistical correlations between soil texture, soil water

potential, and hydraulic conductivity.

The CN2 input parameter was used directly to estimate Q

(mm), and used indirectly to calculate PRK. The two inter-

mediate variables, Q and PRK, strongly affect SW, ET, and

biomass simulations. Furthermore, the CN2 value was deter-

mined based on cover type (e.g., row crops, pasture, etc.),

cover treatment (e.g., bare soil, residue cover, etc.), hydro-

logic condition (poor, fair, or good drainage), and hydrologic

soil groups (A, B, C, or D). Hydrologic condition was based

on specific on-site soil infiltration and runoff conditions, and

the hydrologic groups were based on soil subsurface perme-

ability and surface intake rates (Mockus, 2009). Furthermore,

changes in SAN and SIL prompted us to test the suitability of

CN2 default value based on changes caused by Q, PRK, and

ET.

Other input parameters investigated were FFC (initial soil

water, m m−1), FC (soil field capacity, m m−1), U (permanent

wilting point, m m−1), and GSI (m s−1). The soil input param-

eters FFC, FC, and U were modified based on the observed

SW at different soil depths. Finally, the value of GSI was mod-

ified to accurately simulate SW. According to Kiniry et al.

(2005), finding an appropriate GSI parameter value for a spe-

cific location is critical for realistic SW simulation, especially

in areas where soil moisture is limiting. Excessively large

GSI values simulate greater ET, lower SW, and, consequently,

lower biomass. Underestimation of SW triggers a lower value

for the ALMANAC water stress factor, which reduces simu-

lated biomass yield.
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2.4 Statistical analysis

Different model evaluation statistics were used to assess

the goodness of fit of the simulated data with observed

values. The first method was the Willmott agreement index (d-

index) (Willmott et al., 1985) which quantifies the agreement

between general trends in simulated and observed values. The

d-index was estimated using Eq. (1):

d-index = 1 −

[ ∑𝑛

𝑖=1
(
𝑃𝑖 − 𝑂𝑖

)2
∑𝑛

𝑖=1
(||𝑃𝑖

′|| + ||𝑂𝑖
′||)2

]
0 ≤ 𝑑 ≤ 1 (1)

where n was the number of observations, Pi was the model-

predicted value for the ith measurement, Oi was the observed

value for the ith measurement, and Ō is the overall mean of

the observed values. 𝑃 ′
𝑖

was Pi– Ō, and 𝑂
′
𝑖

was Oi– Ō. The

d-index varies between 0–1, with a value of 1 indicating per-

fect agreement between predicted and observed data. In all

years, d-index values were calculated for contrasting default

and calibrated SW simulations (Pi) with observed SW (Oi).

Also, separate d-indexes were calculated for the calibrated

model in 2011 and 2012 to analyze SW discrepancies. A sepa-

rate d-indexsenesce accounting for the switchgrass senescence

period (i.e., days from peak yield to dormancy), and a sep-

arate d-indexother accounting for all other remaining days in

both years, were calculated.

Another evaluation method used was the RMSE, estimated

using Eq. (2):

RMSE =

√∑𝑛

𝑖=1
(
𝑃𝑖 − 𝑂𝑖

)2
𝑛

(2)

Root mean square errors were calculated for all contrasting

default (RMSEdef) and calibrated (RMSEcal) SW simulations

(Pi) with observed SW (Oi).

3 RESULTS AND DISCUSSION

3.1 Soil water content calibration

The measured values of BD, U, FC, SAN, SIL, and pH dif-

fered from the standard values from USDA-NRCS SSURGO

data for ‘Pickwick gravelly loam, 3–8% slopes’ (Table 3).

Therefore, measured data were used in the soil input

file.

The curve number (CN2) crop parameters CN2A, CN2B,

CN2C, and CN2D are the suggested runoff curve numbers for

the hydrologic soil groups A, B, C, and D for switchgrass; and

their values are 31, 59, 72, and 79, respectively. ALMANAC’s

preset runoff curve number for the Pickwick soil series was

59, which described this soil as in hydrologic soil group B.

F I G U R E 1 ALMANAC simulated soil water losses by runoff,

percolation, and evapotranspiration for different runoff curve numbers

at Fayetteville, AR

The soil description performed on site before planting showed

that the actual soil texture, that is, SAN and SIL values, was

different from the preset texture (Table 3). The soil texture for

all pre-set soil layers was gravelly loam, whereas the actual

soil texture of all soil layers were, on average, loam, clay loam,

clay loam, clay loam, and clay, for the 0.15-, 0.30-, 0.45-,

0.60-, and 0.80-m soil depths. Soils in hydrologic group C

typically contain between 20–40% clay and can have silt loam

or loam textures. In contrast, soils in hydrologic group D have

greater than 40% clay, less than 50% sand, and have clayey

textures (Mockus, 2009). Therefore, the field-described soil

fit as an intermediate between hydrologic groups C and D.

Analysis of the 2009 simulations for the different pro-

posed switchgrass CN2 values showed cumulative Q outputs

of 1, 41, 115, and 191 mm; and the cumulative PRK val-

ues were 514, 473, 397, 303 mm for CN2s 31, 59, 72, and

79, respectively (Figure 1). In addition, the 2009 cumulative

ETs were 761, 760, 756, and 749 mm, respectively. There-

fore, the total 2009 simulated soil water losses were 1276,

1274, 1269, and 1243 mm for CN2s 31, 59, 72, and 79, respec-

tively. The different switchgrass CN2 values proposed for dif-

ferent hydrologic groups did not substantially change the total

simulated soil water losses based on the analysis of 2009

simulations (Figure 1). There was an equivalent water-loss

trade-off between Q and PRK along the range of CN2 values.

Simulated ET values for the CN2 values were not substantially

different which indicated that changes in CN2 values would

not affect the soil-water-plant constraint factor. However, run-

ning ALMANAC with a large CN2 value of 79 reduced total

simulated dry biomass to unrealistic values compared to Ash-

worth et al. (2017) results (data not shown). A large CN2
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value leads to large Q, potentially large nitrate (NO3
−) loss

in surface runoff (YNO3, kg ha−1), a large N-plant constraint

factor, and consequently, low simulated total biomass accu-

mulation. Therefore, the CN2 value of 72 was considered the

most acceptable.

To improve the soil water simulation, values of U and

FC were modified. Heavy rainfall was recorded on 22–30

May 2009 (347 mm) which likely resulted in field capacity

or near soil saturation. The measured values were assumed

to represent maximum SW and therefore were used as best

estimates of field capacity. The maximum soil water con-

tents were 0.35, 0.33, 0.45, 0.50 and 0.54 m3 m−3, for 0.15-,

0.30-, 0.45-, 0.60-, and 0.80-m depths, respectively, which

were used to modify the FC parameter (Table 3). The mini-

mum soil water contents were 0.04, 0.07, 0.14, 0.19, and 0.24

m3 m−3 for the same soil depths, respectively. The low soil

water contents occurred mostly in July 2010, owing to the

lack of rainfall for 30 d and high plant water demand. During

summer 2010, switchgrass started to show signs of stress such

as chlorosis and senescence of lower leaves (Ashworth et al.,

2017). According to Barney et al. (2009), lowland switch-

grass cultivars such as Alamo start to exhibit severe reduc-

tions in biomass yield (75–80%) when soil water potential

declines to −4.0 MPa. Biomass yield collected at its peak in

2011 was only 18% lower than the maximum achieved yield

in 2010 (15.2 vs. 18.6 Mg ha−1, data not shown); therefore,

soil potentials, based on the minimum measured soil water

contents, were likely greater than −4.0 MPa. For this reason,

it was assumed that the U values for each layer were equal to

the minimum observed SW readings. Therefore, the U values

of 0.04, 0.07, 0.14, 0.19, and 0.24 m m−1 were selected for

the 0.15-, 0.30-, 0.45-, 0.60-, and 0.80-m soil depths, respec-

tively. The value of the FFC parameter was considered to be 1,

which meant that the first simulated day had a SW set to field

capacity.

The soil water simulation was partially improved after

inputting actual weather data and modifying pertinent soil

parameters listed above (partial results not shown). However,

at this point, the simulated SW underestimated actual SW dur-

ing July to September 2011 and 2012. The total default simu-

lated ET for the 2009, 2010, 2011, and 2012 growing seasons

were 532, 643, 420, and 454 mm, respectively. These simu-

lated ET values were greater than those reported by McIsaac,

David, and Mitchell (2010), wherein total annual ET from

‘Cave-In-Rock’ switchgrass during the growing season in

Urbana, IL ranged from 258–359 mm across the 4-yr study.

The default GSI was 7.4 10−3 m s−1, which was derived

from the EPIC model. Large GSI values result in large ET and,

consequently, increased plant water use (Kiniry et al., 2005).

Testing different GSI values via trial and error yielded a value

of 3.3 10−3 m s−1 as that which best improved SW simula-

tions to levels shown in Figure 2. In addition, the reduction in

the GSI parameter value decreased simulated ET during the

growing season to 253, 331, 297, and 390 mm for 2009, 2010,

2011, and 2012, respectively.

3.2 Soil water simulation: Calibrated vs.
default model
The calibrated simulated daily SW output for 2009–2012

was based on all modified soil input parameters to the

0.8-m depth, modified GSI, and actual weather data and com-

pared with the default ALMANAC model output. Overall,

the calibrated model performed more accurate SW simula-

tions than the default, in that the latter model consistently

underestimated SW in all years (Figure 2). Improved SW

simulations were achieved with the calibrated model because

key soil input parameter values were adjusted based on in

situ soil sampling and measurements that better represented

actual soil conditions than estimated conditions (Table 3).

Even though calibration drastically improved SW simulation,

the calibrated model accuracy varied among years. In 2009,

the average observed, default, and calibrated SW contents

were, respectively, 0.28, 0.07, and 0.27 m3 m−3. The corre-

sponding d-indexes were 0.28 for default and 0.94 for the cal-

ibrated model. Similar results were observed in 2010 in which

the average observed, default, and calibrated SW were 0.27,

0.08, and 0.29 m3 m−3, respectively. The 2010 default and cal-

ibrated models, respectively, underestimated and accurately

simulated SW year-round. The d-index values for default and

calibrated models in 2010 (0.30 and 0.89, respectively) were

also similar to the values in 2009.

In subsequent years, the calibrated model was still more

accurate than the default; however, its accuracy was lower

than in 2009 and 2010. In 2011, the average observed, default,

and calibrated SW contents were 0.28, 0.08, and 0.24 m3 m−3,

respectively. The corresponding 2011 d-indexes were 0.40

for the default and 0.83 for the calibrated model. Finally, in

2012, the average observed, default, and calibrated SW con-

tents were 0.26, 0.07, and 0.22 m3 m−3, respectively. The

corresponding 2012 d-indexes were 0.41 for the default and

0.81 for the calibrated models. Even though SW averages

and d-indexes calculated for the calibrated model still demon-

strated a more accurate overall simulation than the default

model in 2011 and 2012, the simulated values did not agree

with observed SW during some specific periods. Calibrated

SW simulation values were much lower than observed val-

ues during switchgrass senescence, that is, from peak yield to

dormancy which occurred from July to October in 2011 and

2012 (Figure 2c,d). To quantify the SW discrepancies, sepa-

rate d-indexes for the calibrated model were calculated for the

senescence period (d-indexsenesce) and for the combined

remaining months (d-indexother) in 2011 and 2012. The corre-

sponding separate d-indexsenesce for 2011 and 2012 were 0.48
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F I G U R E 2 Observed, default, and calibrated soil volumetric water content simulated by ALMANAC in 2009 (a), 2010 (b), 2011 (c), and 2012

(d) seasons for a switchgrass field located at Fayetteville, AR. The d values are Willmott agreement indices

and 0.35, respectively. Furthermore, the separate d-indexother

values were 0.87 and 0.91 in 2011 and 2012, respectively,

which were equivalent to the accurate 2009 and 2010 d-index

values. Therefore, it was conclusive that model modifications

during the senescence period were less effective than during

the rest of the season which was likely the primary cause of

lower overall 2011 and 2012 d-index values.

Relatively ineffective calibration during senescence also

explained the larger RMSE values calculated for the cali-

brated model (RMSEcal) in 2011 and 2012 (Figure 3). The

RMSEcal values were 0.014 m3 m−3 in 2009 and 2010, and

0.059 and 0.065 m3 m−3 in 2011 and 2012, respectively

(Figure 3). Even though the inaccurate, low-simulated SW

values during senescence increased the error between the

calibrated model and the observed values in 2011 and

2012, the calibrated model still had an improved relation-

ship with the observed values compared to the default model.

The RMSE for the default model (RMSEdef) were 0.219,

0.210, 0.208, and 0.198 in 2009, 2010, 2011, and 2012,

respectively.
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F I G U R E 3 A comparison of simulated vs. observed soil water contents values for the default and calibrated ALMANAC model in 2009 (a),

2010 (b), 2011 (c), and 2012 (d). Statistic shown is root mean square error for default (RMSEdef) and calibrated (RMSEcal) models

3.3 Model performance and limitations

The default model underestimated SW for all years which

demonstrated the inaccuracy of the SSURGO database when

used for a specific site. The SSURGO database was devel-

oped for parcel, township, or county levels, which contain

map scales ranging from 1:12,000 to 1:63,360 (USDA-NRCS,

2019b); therefore the SSURGO database is recommended

for uses such as developing erosion practices and land use

potential at a watershed scale rather than site-specific crop-

growth-model calibrations. However, the ALMANAC model

was able to accurately predict SW after site-specific soil

parameter values for FFC, BD, U, FC, SAN, and SIL were

used. Efforts must focus on collecting site-specific data that

improve model parameters to refine ALMANAC SW sim-

ulations. Even though calibration of the listed parameters

greatly improved overall SW simulation, the 2011 and 2012

simulated values from day of year 183–283 underestimated

actual SW. One plausible explanation was the greater total

precipitation during the growing season (May–Oct.) in 2009

(906 mm) and 2010 (782 mm) compared with that in 2011

(516 mm) and 2012 (422 mm). Furthermore, the 2009 and

2010 rainfall was evenly distributed during the growing sea-

sons. Conversely, low precipitation, such as 37 and 12 mm,

was measured from 28 May to 9 August in 2011 (74 d) and

from 28 June to 13 August in 2012, respectively. The SW

underestimation coincided during these two short drought

periods and carried forward through October. Switchgrass

can decrease its evapotranspiration during drought periods,

which decreases soil water losses (McIsaac et al., 2010). The

dynamic of switchgrass attenuating its evapotranspiration dur-

ing periods of differential soil water availability is not cur-

rently modeled by ALMANAC. Conversely, the GSI param-

eter is a fixed value irrespective of changes in soil water

availability to the modeled crop, which limits the simula-

tion of ET during dry periods. Nevertheless, the modified

parameters resulted in overall improved soil water simula-

tion, as shown by close matching of observed and simulated

values.

3.4 Conclusions and recommendations

Simulation of soil water content in ALMANAC can be

improved by using site-specific soil input, where FFC, BD,

U, FC, SAN, and SIL were considered the most influen-

tial soil parameters. The model was limited in simulating

accurate soil water content during extended drought periods.

This limitation was related to the GSI crop parameter, which

demands a more representative value, especially for drought-

resistant plants such as switchgrass. Therefore, efforts

should focus on quantifying stomatal conductance dynam-

ics of drought-resistant plants to further improve soil-plant

simulations.
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